Tumor Tissue Identification Technology by Estimating Features of Immunostaining Images from Hematoxylin-Eosin Stained Images using Convolutional Neural Networks

HITACHI **Inspire the Next**

method such as immunohistochemistry (immunostaining).

- convolutional neural network (CNN),

Hideharu Hattori^{1*}, Yasuki Kakishita¹, Akiko Sakata², Atushi Yanagida² ¹Hitachi, Ltd. Research & Development Group, Tokyo, Japan, ²Hitachi, Ltd. Hitachi General Hospital, Ibaraki, Japan *E-mail : hideharu.hattori.hs@hitachi.com

Background

logy by Estimating Features of Immunostaining Images using Convolutional Neural Networks. Medical Imaging Technology. 2019:37:147-154. [2] Kakishita Y, Hattori H. Classification Reasons Visualization of Deep Neural Network Using Model Inverse Analysis. Transactions on Mathematical Modeling and its Applications (TOM). 2019;12:20-33.

Results

The experimental results using digital images of pathological tissue specimens of prostate cancer show improved identification accuracy. The proposed method improved 10.6% (to 92.5%) for sensitivity and 2.5% (to 86.9%) for specificity compared with a classifier created

Table 1 Classification accuracy of prostate cancer

oup type	Sensitivity	Specificity
stained	81.9%	84.4%
method	92.5%	86.9%
ed and (320)	99.4%	93.1%
atures of stimated	46.3%	93.1%

Fig. 6 ROC(Receiver operating characteristic) of each classifier

AUC is 0.92 Sensitivity 0.9 False positive rate ROC of Classifier IB

Fig. 7 Visualization of classification basis [2]

Classifier IB

classifier IB can estimate features similar to those of the classifier

Conclusions

By this method, not only the features of HE-stained image but also the features of immunostaining estimated from HE-stained image is used to create a classifier, which improves the accuracy of tumor identification in pathological images. Therefore, it was shown to be