
1 – Background

In digital pathology, whole-slide analysis with positive and negative tumor cells needs pathologists to

initially provide tumor annotations that exclude non-target regions, such as normal tissue. It is

difficult to exclude “Lymphoid Aggregate Regions (LARs),” which are clusters of immune cells and

their morphology is frequently similar to group of negative tumor cells. As a result, image-analysis

algorithms may provide false detection results for these LARs.

Goal: We propose a deep-learning approach to improve accuracy and reduce false non-tumor

detection before performing standard algorithms on wholeslide analysis.

2.1 – Method: Modified U-NET, Tile-based Encoder Decoder

We proposed a modified U-NET that automatically detected and masked out LARs. 

2.2 – Method: Ground Truth Collections for Training the Networks

Selected Tile Images            Annotated LARs on Tile Images          Patched Images and Masks

2.3 – Method: U-NET Model Training

To optimize the network parameters, we used a binary cross-entropy loss function, 100 
epochs, batch size of 1, and learning rate of 1x10e-5 with Adam optimizer. Two levels of 
image resolution, 20X and 10X, were used to optimize the network parameters.

3.1 - Results
The testing results achieved average intersection-over-union (IoU) scores of 0.97 across 
the tested resolution levels, where the 20X image resolution provided better results. 
Therefore, our method improves the classification results by reducing false positive 
detection of LARs. 

3.2 – Results

The 256 x 256 patch images were stitched to become a tile mask image. This mask was 
used to correct the analysis results that were over-detected in LARs, which reduced false 
non-tumor detection.       

4 – Conclusions 

Our proposed method locates and identifies LARs to improve tumor classification tasks. 
This approach is not limited to segmenting LARs in tissue, but it easily be adapted to other 
non-tumor areas such as necrosis, scanner artifacts, and tissue folds. For the future work, 
we can integrate this proposed framework to wholeslide image analysis.
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1. Reduction 

in number 

of 

channels

The channel numbers of the 

intermediate activation output layers is 

reduced by a factor of 4 (the red 

numbers of the figure). For example, in 

the second layer, the number of 

channels is reduced from 64 to 16, etc, 

and the max number of channels is 256 

instead of 1024 used in the original 

UNET [1].

The channel reduction decreases the 

computation expense and model 

complexity. The compressed UNET 

provides better results than using the 

original UNET.

2. Spatial 

drop out

Use it at the last few layers of the 

encoder (contracting path) to combat 

overfitting [2].

3. Learning 

rate 

schedule

Step decay, which is a state-of-the-art 

strategy for optimizing the loss function.
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For training data, non-tumor of 

LARs and tumor regions were 

manually annotated using a 

total of 28 wholeslide images of 

DAB colorectal cancer slides. 
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80% training 

set and 20% 

testing set, 

respectively.
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