
Abstract

Image analysis is motivated by the desire to extract relevant

biological data from digital images in order to answer underlying

questions about the pathogenesis of disease, and other biological

phenomena. With the advent of automated whole slide scanning

came the demand for image analysis software equipped with

machine learning and artificial intelligence. Thus, ensued new

issues and obstacles in image analysis and for those who perform

it. Here, we present common difficulties in image acquisition and

analysis on a cohort of tissue samples processed through the

Analytic Microscopy Core at Moffitt Cancer Center. We compare

pros and cons between two types of image analysis software on

images acquired on an Aperio AT2 whole slide scanner. We

provide a realistic workflow which addresses and circumvents

common bottlenecks in data exploitation from pre- to post-

acquisition. In addition, we offer strategies to overcome

complications like stitching artifacts from image acquisition, tissue

heterogeneity and damage, variability in stain penetrance, and

border definition during segmentation which all result in variation

between samples. Being mindful of these obstacles and verifying

data post-processing can lead to robust, reliable, reproducible

results, and biologically relevant data.
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Addressing the Bottleneck
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Objective

Image Analysis Bottleneck

Image analysis from whole slide imaging data is susceptible to

bottlenecks that occur throughout in the entirety of the image

analysis workflow that limits the amount of useable data. Our

objective is to foster a robust image analysis plan that limits the

magnitude of this bottleneck.

Results

Methods

An “Ideal” Specimen

Histology slides were scanned using the Aperio™ ScanScope

AT2 (Leica Biosystems, Vista, CA) with a 20x/0.8NA objective

lens. In order to demonstrate image analysis data is variable

depending on the amount of training provided to the machine

learning software (Definiens Tissue Studio 2.7), 8 H&E slides of

pancreatic tumors (Panc02) with varying levels of necrosis were

analyzed with minimal (1 training area) and maximal training (12

training areas). Images were annotated by a pathologist prior to

analysis. From each slide, 1000x1000 pixel regions of 5 viable

and 5 non-viable tissue were excised for scoring for a total of 80

scored images.

To evaluate performance of each algorithm, we used the following

definitions for performance metrics:

Sensitivity = 
TP

TP +FN

Accuracy = 
TP+TN

TP+FN+TN+FP

Whereby, TP = True Positive, TN = True Negative, FP = False

positive, and FN = False Negative. Formulas are from Xu et al.,

2020 (DOI: 10.4103/jpi.jpi_68_19).Figure 1. A schematic representation of the bottleneck generated in the

image analysis workflow. From sample preparation to quantitative data

generation there are various factors arise that impact the amount of

exploitable data.

Figure 2. An “ideal” H&E sample. An example of a H&E stained breast

cancer xenograft tumor specimen with even staining, no adjacent tissue,

clean coverslip, no tissue damage, and discernible regions of interest.

Scale bar = 3 mm.
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Figure 3. The harsh reality of H&E samples. An example of H&E stained

pancreatic tumor (Panc02) specimens with variable staining, adjacent

tissue, tissue damage, and indiscernible regions of interest. All with visible

image stitching artifacts. Scale bar = 4 mm.
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Figure 5. A diagram showing steps in the image analysis workflow with

recommendations to limit bottlenecking.
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Amount of training impacts image segmentation.

Segmentation of viable and non-viable tumor areas are impacted

by the level of training and representative areas provided to the

machine learning software (Figure 6). Maximal training provides

additional detection and segmentation of non-viable tumor areas.

Figure 6. Segmentation of viable and non-viable histological tumor

sections are impacted by amount of training. A tumor section stained

with H&E (left), and respective masks of viable (orange) and non-viable

(blue) tumor regions with minimal training (middle), and maximal training

(right). Scale bar = 2 mm.

Viable Non-Viable

Minimal Maximal Minimal Maximal

Sensitivity 63% 38% 73% 82%

Accuracy 63% 38% 74% 83%

Algorithm performance is determined by amount of training.

Performance of each algorithm was evaluated by comparing the

analysis segmentation versus the annotation provided by experts.

We observed that maximal training areas increased the sensitivity

and accuracy of non-viable tumor areas while decreasing in viable

tumor areas (Table 1).

Table 1. Summary of algorithm performance across all

histological slides for viable and non-viable tumor areas.
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Image analysis software equipped with machine learning

algorithms and artificial intelligence has been a buzzword in the

scientific community. However, these software are susceptible to

inherent bias based on user training and pathologist annotation.

We observed that while increased training enhanced sensitivity

and accuracy of non-viable tumor areas, it can impact the ability to

detect some viable tumor areas. As shown here, automated image

analysis is a balancing act with the final goal of attaining the best

possible segmentation. Meaning, at times you need to

compromise the accuracy and sensitivity of one parameter to

improve the results of the other. In addition, deep learning

algorithms are currently in development and could potentially

overcome these limitations and improve accuracy in

histopathologic diagnosis. In order to improve on current analysis

methods, imaging scientists should reduce factors that negatively

impact the digital pathology workflow, which will help create robust

reproducible and reliable results.
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Figure 4. Segmentation variability between image analysis algorithms. An

example of an H&E stained pancreatic tumor (Panc02) specimen. The

original specimen (left) is segmented to viable (orange) and non-viable

(blue) tumor regions by unsupervised/untrained K-means clustering

(middle), and decision forest (right), which requires manual training. K-

means clustering saves time but is less accurate than machine learning

segmentation. Scale bar = 2 mm.


