

Damir Vrabac¹, Akshay Smit¹, Rebecca Rojansky², Yasodha Natkunam², Ranjana H. Advani², Andrew Y. Ng¹, Sebastian Fernandez-Pol², and Pranav Rajpurkar¹ ¹Department of Computer Science, Stanford University ²Department of Pathology, Stanford University

Introduction

- Diffuse Large B-Cell Lymphoma is the most common type of non-Hodgkin lymphoma¹.
- The best clinical prognosticator (IPI score) is insufficient to guide therapeutic decision-making for individual patients².
- The Hans algorithm distinguishes the more favorable GCB subtype from the non-GCB subtype ³.
- Double-hit and double-expressor lymphomas with concurrent aberrations in MYC and BCL2 or BCL6 correlate with an aggressive clinical course ⁴.
- Classification based on morphology has been challenging due to histomorphologic heterogeneity.

Objectives

- . Identify prognostically relevant features on H&E sections.
- 2. Provide a cost-effective alternative to current classification methods.
- 3. Provide a dataset of annotated slides with immunohistochemical and outcome data.

Methods

- 170 de novo, CD20+ DLBCL patients treated with with R-CHOP with clinical data from Stanford Cancer Institute⁵.
- 7 tissue microarrays composed of duplicate 0.6-mm diameter cores, 0.4 um formalin-fixed, paraffin-embedded (FFPE) sections stained with H&E, CD10, BCL6, MUM1, BCL2, and MYC.
- Scanned at 40x magnification (0.25 μ m per pixel), Aperio AT2 scanner (Leica Biosystems, Nussloch, Germany).
- Pathologists annotate representative area
- Non-overlapping 224x224 pixel patches extracted within ROIs.
- HoVer-Net⁶ deep learning model to segment tumor cell nuclei and compute geometric descriptors.
- Statistical Analysis: Cox Proportional Hazards model with Follow-up Status as indicator of censoring, and overall survival as time to event or censoring.

Morphological features computed using deep learning for an annotated digital DLBCL image set

Results

Figure 1. Tissue microarrays (TMAs) with region-of-interest (**ROI**) annotations. A) H&E stained TMA. The red rectangles denote ROIs annotated by a pathologist. B) A single core from the TMA in a) showing ROIs. C) BCL6 stained TMA, containing cores from the same patients as a). D) A single annotated core from the TMA in c).

Figure 3. Rectangle and ellipse fitted to a single segmented tumor **nucleus**. a) a binary segmentation image for a tumor cell nucleus. B) rotated rectangle fit to the nucleus. c) rotated ellipse fit to the nucleus.

Figure 4. 95% two-sided confidence interval (CI) for the optimismcorrected C-index using the non-parametric percentile bootstrap method^{$\underline{30}$} with 1000 bootstrap replicates.

Contact Information: Rebecca Rojansky, MD, PhD | rebecca.rojansky@stanford.edu

Figure 2. Data pipeline for a single core from an H&E stained tissue microarray (TMA). In a) the red rectangle is the pathologist-annotated ROI. In c) red corresponds to cell nuclei classified as "neoplastic" by HoVer-Net. Green corresponds to "inflammatory" and orange corresponds to "non-neoplastic epithelial".

Figure 5. The directory structure of DLBCL Morph

Stanford ΜΕΟΙΟΙΝΕ

Discussion

- Geometric features alone allow significantly better than random prognostic outcome prediction that is as good as clinical features.
- Trend that clinical and geometric features combined achieved higher performance than the clinical features alone.

Conclusions

Geometric features computed from H&E-stained sections can provide a significant signal to determine prognostic outcome independent of clinical features.

Future Directions

- Further evaluation on external datasets and prospectively in future studies
- This dataset including annotations is available here:

https://arxiv.org/abs/2009.08123

References

- Horvat, M. et al. Diffuse large b-cell lymphoma: 10 years' real-world clinical experience with rituximab plus cyclophos- phamide, doxorubicin, vincristine and prednisolone. Oncol. Lett. 10.3892/ol.2018.7774 (2018).
- 2. Zhou, Z. *et al.* An enhanced international prognostic index (NCCN-IPI) for patients with diffuse large bcell lymphoma treated in the rituximab era. Blood 123, 837-842, 10.1182/blood-2013-09-524108 (2014).
- 3. Alizadeh, A. A. et al. Distinct types of diffuse large bcell lymphoma identified by gene expression profiling. Nature 403, 503–511, 10.1038/35000501 (2000)
- Riedell, P. A. & Smith, S. M. Double hit and double expressors in lymphoma: Definition and treatment. *Cancer* **124**, 4622–4632, 10.1002/cncr.31646 (2018).
- 5. Rosenwald, A. et al. Prognostic significance of myc rearrangement and translocation partner in diffuse large b-cell lymphoma: A study by the lunenburg lymphoma biomarker consortium. J. Clin. Oncol. 37, 3359–3368, 10.1200/JCO.19. 00743 (2019). PMID: 31498031, https://doi.org/10.1200/JCO.19.00743.
- 6. Graham, S. *et al.* Hover-net: Simultaneous segmentation and classification of nuclei in multitissue histology images (2018). 1812.06499.