Deployment of a multi-tissue Al-based quality control system in routine clinical workflow

Judith Sandbank^{1,2}, Ira Krasnitsky¹, Issar Yazbin¹, Inbal Gross¹, Ronen Heled¹, Arthur Rozenberg^{1,2}, Ronen Cypis¹, Rachel Mikulinsky¹, Einav Shnaidman^{1,2}, Geraldine Sebag¹

1 Ibex Medical Analytics Ltd., Tel Aviv, Israel 2 Maccabi Healthcare Services, Israel

BACKGROUND

- Maccabi Healthcare Services, a large healthcare provider with a centralized pathology institute, receives samples from 350 clinics & hospitals and handles 140,000 accessions/year
- A significant portion of the histopathology cases are prostate core needle biopsies ~700 cases/year (>8,000 slides) and breast biopsies ~7000 cases/ year (>35,000 slides)
- Maccabi is staffed with 11.5 FTE pathologists ,~20K cases/year per pathologist
- The very heavy case load leads to potential errors and significant delays in reporting, as well as inability to implement QC
- Al-based solutions that support pathologists in their diagnostic work have the potential to relieve this burden
- Ibex Medical Analytics develops Al-based diagnostic solutions for pathology, including Galen[™] Prostate CE-IVD marked solution, which detects and grades prostate core needle biopsies, and Galen[™] Breast solution, which detects invasive and in-situ carcinomas in breast biopsies

OBJECTIVE

To assess the clinical utility of Galen Prostate and Galen Breast solutions deployed as a QC system on all new prostate and breast biopsies entering the lab in routine clinical use at Maccabi

METHODS

- > Slides are scanned using a Philips IntelliSite Scanner at 40x magnification (pixel resolution of 0.25 μ m/pixel).
- The underlying algorithms utilize state-of-the-art Artificial Intelligence (AI) and Machine Learning techniques, and were trained on >2M image samples, obtained from slides from multiple labs and geographies, and manually annotated by senior pathologists.
- The prostate algorithm was validated with outstanding results in a recently publised study and conducted at UPMC (Pantanowitz et al. 2020). The validation of the breast algorithm is shown here (see Table 2)
- The Second Read system runs in parallel to the pathologists' routine workflow and raises alerts when encountering discrepancies between the automated analysis and the original pathologist's diagnosis, prompting a second pathologist review (see Figure 1).
- Galen Prostate solution raises two types of alerts: a) Slides from benign cases that have a high suspicion of cancer b) Slides from G3+3 cancer cases that have a high suspicion of G7+
- Galen Breast solution raises the following alerts: a) Invasive cancer alert on slides from benign and DCIS/ADH cases that have a high suspicion of invasive cancer (both IDC and ILC)
- b) Ductal carcinoma in situ (DCIS) alert that also includes Atypical ductal hyperplasia (ADH) on slides from benign cases that have a high suspicion of DCIS/ADH

RESULTS

COMPUTATIONAL AND CLINICAL WORKFLOW OF GALEN SECOND READ SOLUTION

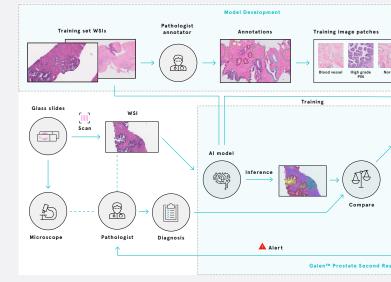


Figure 1. Overview of the algorithm development and clinical deployment of the Galen Prostate solution. The breast algorithm was trained and deployed in a similar way.

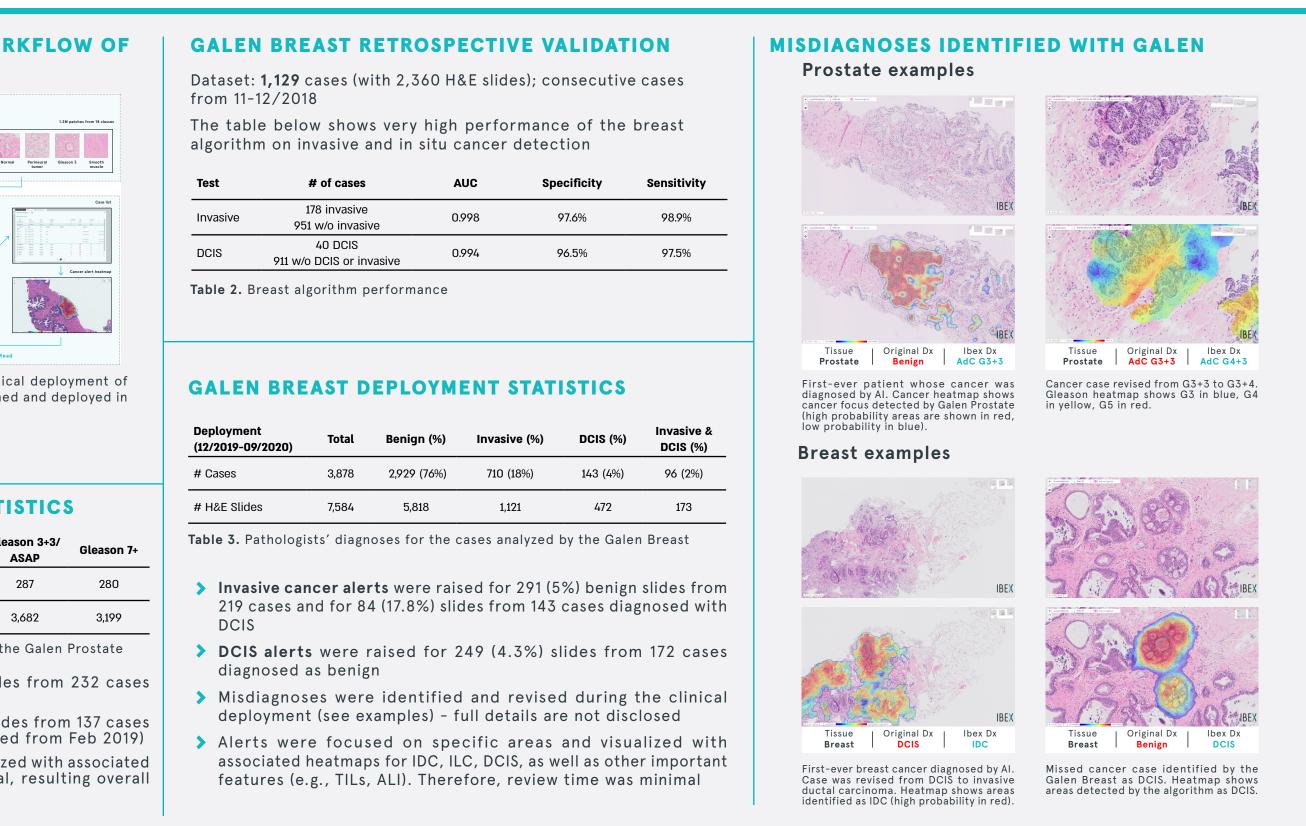
From 0% to 100% QC using Al

GALEN PROSTATE DEPLOYMENT STATISTICS

Deployment (03/2018-09/2020)	Total	Benign (%)	Adenocarcinoma (%)	G
# Cases	1,032	465 (45%)	567 (55%)	
# H&E Slides	12,620	5,739	6,861	

 Table 1. Pathologists' diagnoses for the cases analyzed by the Galen Prostate

- Cancer alerts were raised for 583 (10.1%) slides from 232 cases diagnosed by pathologists as benign
- Gleason 7+ alerts were raised for 93 (5.3%) slides from 137 cases diagnosed as Gleason grade 3+3 (alert deployed from Feb 2019)
- Alerts were focused on specific areas and visualized with associated heatmaps. Therefore, review time was minimal, resulting overall
- in ~1% of pathologist FTE


DISCUSSION AND CONCLUSIONS

(1)

We show here the first Al-based multi -tissue pathology diagnostic system ever deployed in routine clinical practice

Contact: Judith.Sandbank@ibex-ai.com

The Al-based QC system was proven to be extremely useful for increasing diagnostic accuracy and safety

Maccabi now has a solution that delivers very important benefits:

- Al deployment drove the business case for full digitization of the pathology lab
- Al support to improve Efficiency (address shortage of pathologists)
- Al support to improve Quality (alerts and heatmaps for cancer, Gleason, DCIS, etc.)
- 100% QC on prostate and breast biopsies

