Characterization of the 3D microanatomy of the pancreas and pancreatic cancer in situ at single cell resolution

Ashley Kiemen¹, Alicia Braxton², Seung-Mo Hong³, Toby Cornish⁴, Laura Wood², Ralph Hruban², PeiHsun Wu¹, Denis Wirtz^{1,2,5,6}

¹ Department of Chemical & Biomolecular Engineering, Johns Hopkins University 21218, ² Department of Pathology, Johns Hopkins University School of Medicine 21287, ³ Department of Pathology, University of Ulsan, Ulsan, South Korea, ⁴ Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA, ⁵ Department of Oncology, Johns Hopkins University School of Medicine 21287, ⁶Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA. Email: akiemen1@jhu.edu

Pancreatic Intraepithelial Neoplasia (PanIN)

Deep learning labels eight distinct tissue types using H&E stain

3D microanatomy of the cancerous pancreas Z-projections convey 3D heterogeneity of pancreas

- Mucinous, elongated epithelium within pancreatic ducts
- Asymptomatic precursor to PDAC **Pancreatic Ductal AdenoCarcinoma (PDAC)**
- Typically diagnosed at distant stage
- 8% 5-year survival rate ⁽²⁾

3D reconstruction of serially sectioned human pancreas

2. Train and validate semantic segmentation network

training data until classification of

Pancreatic ductal submucosa aligns along the direction of the duct

Registration aligns images into digital volume

Input: stack of 101 sliced H&E stained images each 4µm thick 1. Global (course) registration: corrects whole tissue misalignment in angle and position 2. Local (fine) registration: corrects tissue stretching & folding by registering areas of interest Output: registered images and 3D PanIN model Computational time: 25 minutes

3. Classify non-annotated images in block

4. Build tissue volume from classified images

References

- (1) Zhu, Liqin, et al. "Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia." *The American journal of pathology* 171.1 (2007): 263-273.
- (2) Siegel, Rebecca L., Kimberly D. Miller, and Ahmedin Jemal. "Cancer statistics, 2018." CA: a cancer journal for *clinicians*68.1 (2018): 7-30.
- (3) Mehta, Kapil, and Amy Han. "Tissue transglutaminase (TG2)-induced inflammation in initiation, progression, and pathogenesis of pancreatic cancer." Cancers 3.1 (2011): 897-912.
- (4) Rebours, Vinciane, et al. "Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN)." Clinical Cancer Research 21.15 (2015): 3522-3528.
- (a) Photo Credit: https://clinicalgate.com/carcinoma-of-the-pancreas-2/