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Introduction Tissue Classification Using CNNs Interpretation Errors

Deep learning models learn very generic features at initial layers,  There are 4 classes of tissue namely- tumor, adipose, debris and Classify * Regress * Segment

which makes It possible to reuse a network trained on task A for task mucosa. We need a lot of data + hardware to train deep models

B N o Other classes also included: Stroma, complex, lymphocyte and Pre-trained models can be used to achieve a really good performance in
De-facto pre-training on ImageNet, a large dataset for generic image stroma classification and regression

classification having 1000 categories

Pre-trained network outputs a representation of the image, which Is

easler for computers to further classify into new target classes - : n .

With pre-training, need 100-500 examples of each new class for co“"“'“tm“al Neural NetWOrk V|S“allsat|0“8
robust classification

Knowledge learnt from image classification is transferred to new

task of tissue classification 01_TUMOR
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5 convolution+RelLU ™ 3 ‘ : ' ) .. . 01 TUMOR 0.68 0.69 0.69 32 I n S u m mary

“—1) max pooling
fully nected+RelU

Sty 02 STROMA = 0.74 0.73 0.74 39 * Precision, recall and F1score
Feature Visualisation 06_MUCOSA oome wn | o | 8 || s disnhysa 1w
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 This suggests that a human +
technique. \ | 8 —T - o . machine interpretation will

Data used was NCBI GDC repository of Colorectal . "y supersede either one
adenocarcinoma slides [Total 5000 patches extracted from | _ BEMPTY | 067 | 067 ] 04 27 » Best case use as a screening tool
digitised FFPE slides] ’ -

More than 100 examples of each class for training

Grad Cam technigue which highlights the feature points in

Visualization of a Convolutional Neural Network (CNN) | A s cs.DEBRIS 073 | 074 | 074 28
VGG16 at an intermediate layer using the Grad CAM S - 06_MUCOSA 075 0.73 0.74 31
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. 4. Intuitively Understanding Convolutions for Deep Learning
S https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel

. . . . 5. Code developed
Grad Cam TeChmque fOr Vlsuallsatlon Of CNN https://colab.research.google.com/drive/1zH94dNwXN5nxOIn7nJ_XgR70QeZ0bt97P?usp=sharing
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