

HARVARD Multi-center Weakly Supervised Computational Pathology MEDICAL SCHOOL on Whole Slide Images using Federated Learning MEDICAL SCHOOL on Whole Slide Images using Federated Learning

BRIGHAM AND WOMEN'S HOSPITAL

Abstract

We present a federated learning framework for both weaklysupervised classification and survival prediction on whole slide images and validate our approach on three different computational pathology tasks, using multi-institutional data from the TCGA and Brigham and Women's Hospital. Our approach is privacy preserving, does not require manual annotations during training, is interpretable and can be applied at scale.

Motivation

- Accurate, robust AI predictive models often require large amounts of diverse, high-quality labeled data, which can be difficult or impossible to curate at a single institution.
- Federated learning allows machine learning models to be developed on multi-institutional data without requiring direct data sharing, alleviating the burden of navigating around many challenges of sharing sensitive patient data and large cohorts of histopathology images at the tera- or peta-byte scale.
- There is a need for the development and validation of federated learning algorithms for a wide range of computational pathology tasks.

Weakly-supervised learning on WSIs

First, the tissue regions of each WSI are segmented and divided into patches and encoded by a pretrained CNN into lowdimensional embeddings $\{z_m\}, z_m \in \mathbb{R}^{1024}$. This results in each WSI being described by a matrix of patch embeddings: $H_i \in$ $\mathbb{R}^{M_j \times 1024}$, where M_j is the number of patches in the j^{th} WSI. After projecting $\{\mathbf{z}_{j,m}\}$ into $\{\mathbf{h}_{j,m}\}, \mathbf{h}_{j,m} \in \mathbb{R}^{512}$, the contribution of each patch $a_{i,m}$ is given by:

$$a_{j,m} = \frac{\exp\left\{\mathbf{W}_{a}\left(\tanh\left(\mathbf{V}_{a}\mathbf{h}_{j,m}^{\top}\right)\odot\operatorname{sigm}\left(\mathbf{U}_{a}\mathbf{h}_{j,m}^{\top}\right)\right)\right\}}{\sum_{m=1}^{M_{j}}\exp\left\{\mathbf{W}_{a}\left(\tanh\left(\mathbf{V}_{a}\mathbf{h}_{j,m}^{\top}\right)\odot\operatorname{sigm}\left(\mathbf{U}_{a}\mathbf{h}_{j,m}^{\top}\right)\right)\right\}}$$

where W_a , U_a and V_a are learnable network parameters. Using weighted average pooling, the WSI is in turn described by $h_{bag_i} \in$ \mathbb{R}^{512} :

$$\mathbf{h}_{bag_j} = \mathbf{Attn-pool}(\mathbf{A}_j, \mathbf{H}_j) = \sum_{m=1}^{M_j} a_{j,m} \mathbf{h}_{j,m}$$

Depending on the task, the last layer of the network either predicts class-probability scores (classification) or models the hazard function (survival prediction):

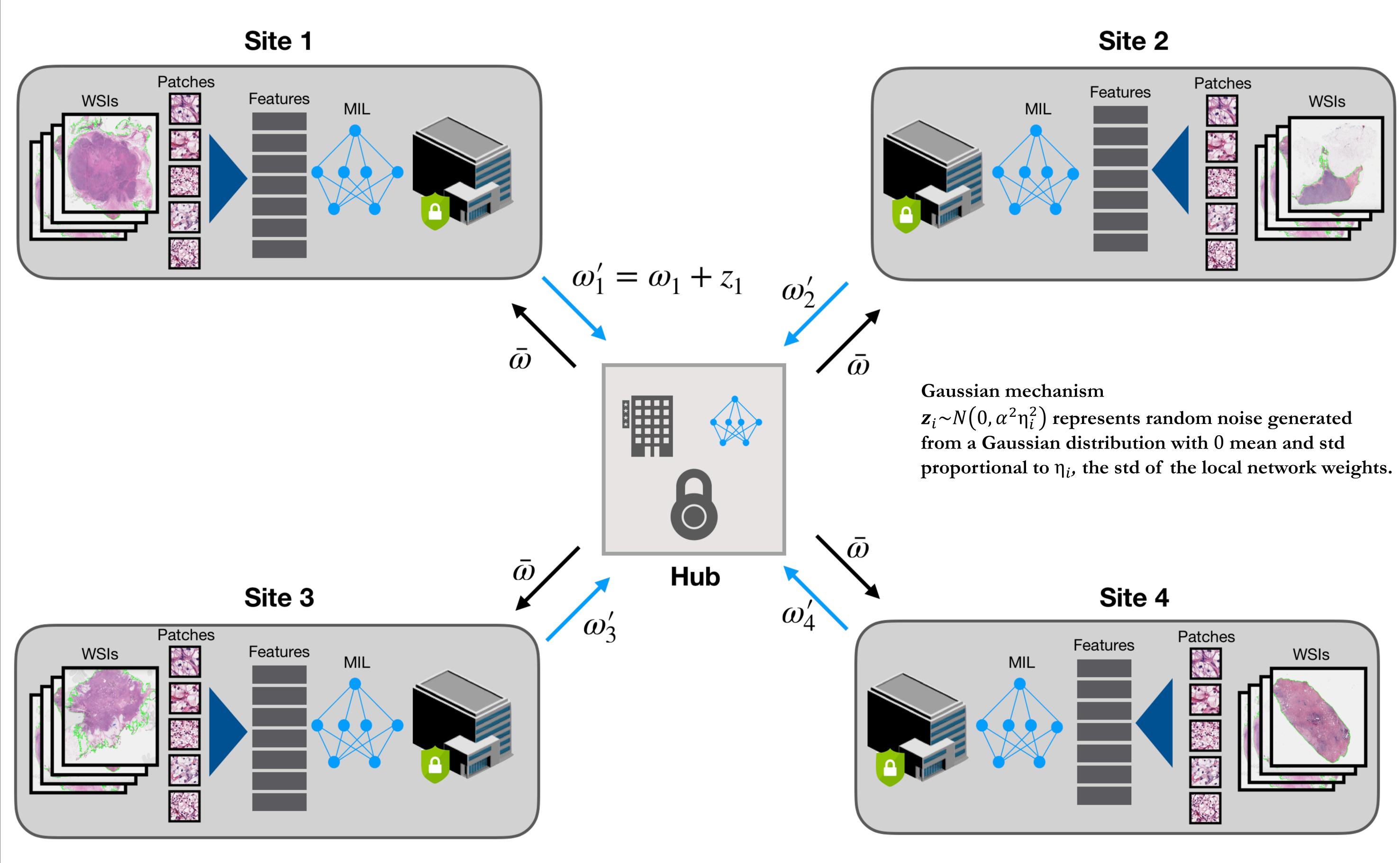
$$f_{hazard}(r \mid \mathbf{h}_{bag_j}) = P(T_j = r \mid T_j \ge r, \mathbf{h}_{bag_j})$$

For classification, the network is supervised via the cross-entropy loss, and for survival, we used the nll loss given below, where f_{surv} is the survival function, c_i the censorship status and Y_i the ground truth discrete follow-up time:

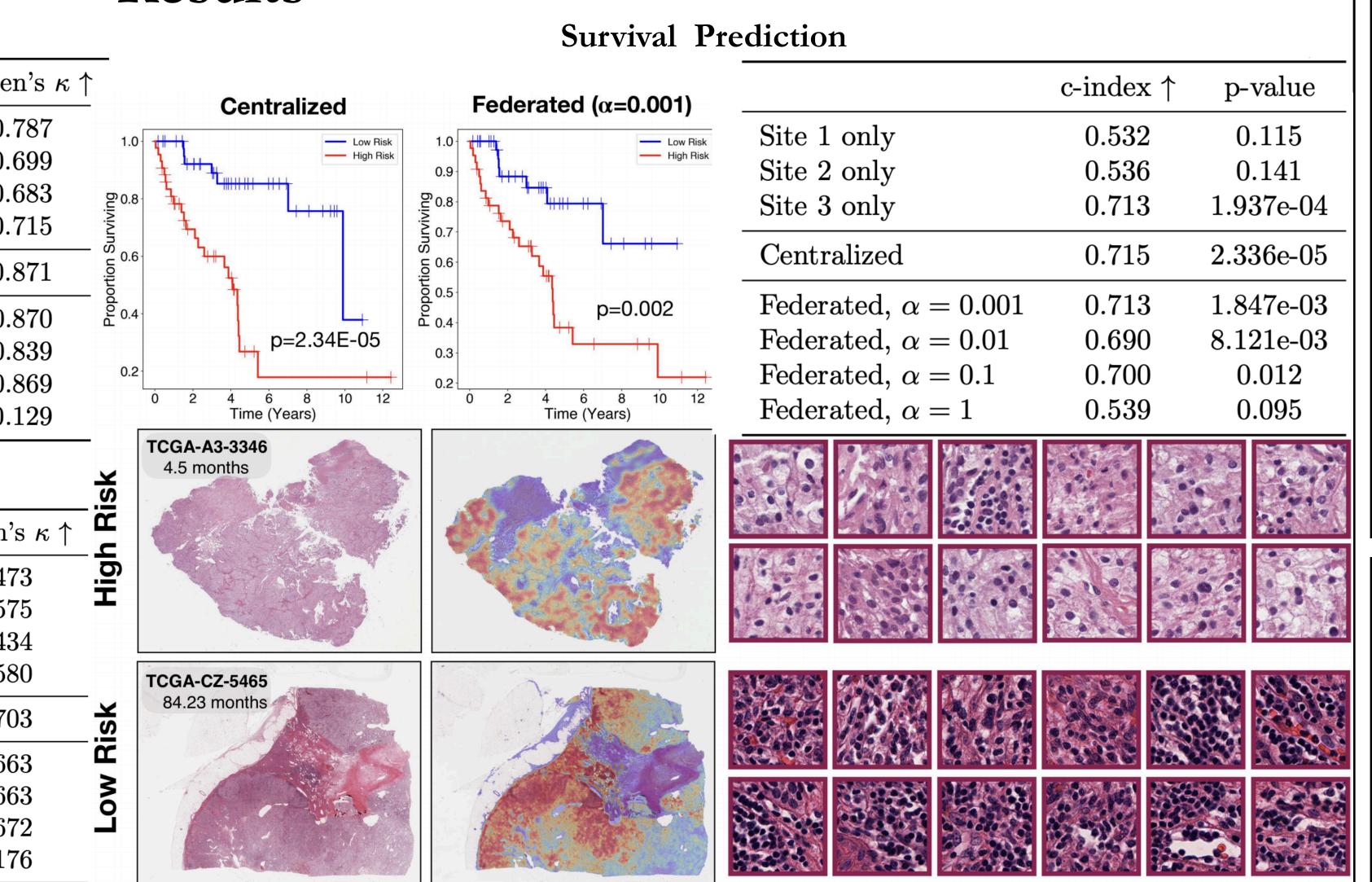
$$egin{aligned} L &= -l = -c_j \cdot \log \left(f_{surv} \left(Y_j \mid \mathbf{h}_{bag_j}
ight)
ight) \ &- (1-c_j) \cdot \log \left(f_{surv} \left(Y_j - 1 \mid \mathbf{h}_{bag_j}
ight)
ight) \ &- (1-c_j) \cdot \log \left(f_{hazard} \left(Y_j \mid \mathbf{h}_{bag_j}
ight)
ight) \end{aligned}$$

Ming Y. Lu, Dehan Kong, Jana Lipkova, Richard J. Chen, Rajendra Singh, Drew F. K. Williamson, Tiffany Y. Chen, Faisal Mahmood mlu16(a)bwh.harvard.edu - faisalmahmood(a)bwh.harvard.edu www.mahmoodlab.org

Federated Learning for Weakly-supervised Classification and Survival Prediction on Whole Slide Images



RCC Subtyping						
	AUC (95% CI) \uparrow	Error \downarrow	$\mathrm{bAcc}\uparrow$	$F1\uparrow$	$\mathrm{mAP}\uparrow$	Coher
Site 1 only	$0.975 \ (0.964 - 0.986)$	0.112	0.850	0.888	0.955	0.7
Site 2 only	$0.964 \ (0.948 - 0.980)$	0.165	0.821	0.835	0.941	0.6
Site 3 only	$0.951 \ (0.933 - 0.969)$	0.176	0.811	0.824	0.917	0.6
Site 4 only	$0.957 \ (0.941 - 0.974)$	0.153	0.828	0.847	0.930	0.7
Centralized	$0.988 \ (0.981 - 0.995)$	0.071	0.950	0.929	0.980	0.8
Federated, $\alpha = 0.001$	$0.988 \ (0.981 - 0.995)$	0.071	0.931	0.929	0.978	0.0
Federated, $\alpha = 0.01$	$0.986\ (0.978$ - $0.994)$	0.088	0.922	0.912	0.975	0.8
Federated, $\alpha = 0.1$	$0.986\ (0.979$ - $0.994)$	0.071	0.917	0.929	0.976	0.8
Federated, $\alpha = 1$	$0.685 \ (0.638 - 0.732)$	0.576	0.416	0.424	0.539	0.1
	BRCA S	ubtypin	g			
	AUC (95% CI) ↑	Error \downarrow	$bAcc\uparrow$	$F1\uparrow$	$\mathrm{mAP}\uparrow$	Cohen's
Site 1 only	$0.866 \ (0.808 - 0.923)$	0.143	0.720	0.558	0.667	0.47
Site 2 only	$0.853\ (0.795$ - $0.912)$	0.121	0.782	0.649	0.618	0.57
Site 3 only	$0.800\ (0.719$ - $0.881)$	0.128	0.668	0.494	0.605	0.43
Site 4 only	$0.874 \ (0.821 - 0.928)$	0.106	0.750	0.638	0.750	0.58
Centralized	$0.946 \ (0.910 - 0.981)$	0.078	0.815	0.747	0.874	0.70
Federated, $\alpha = 0.001$	$0.928 \ (0.886 - 0.970)$	0.100	0.836	0.724	0.837	0.66
Federated, $\alpha = 0.01$	$0.927 \ (0.885 - 0.969)$	0.100	0.836	0.724	0.834	0.66
Federated, $\alpha = 0.1$	$0.929\ (0.886\ -\ 0.972)$	0.097	0.838	0.730	0.840	0.67
Federated, $\alpha = 1$	$0.650 \ (0.569 - 0.732)$	0.174	0.564	0.243	0.341	0.17



Experimental Setup

- Classification tasks:

- Renal cell carcinoma (RCC) histologic subtyping into clear cell (CCRCC), papillary
- (PRCC) and chromophobe (CHRCC) Breast invasive carcinoma (BRCA) histologic
- subtyping into ductal (IDC) and lobular (ILC)
- Survival prediction:
- CCRCC survival prediction and risk-based patient stratification

- Datasets:

- TCGA-KIRC (519 WSIs), TCGA-KIRP (297 WSIs), TCGA-KICH (121 WSIs), TCGA-BRCA (1056 WSIs), BWH In-house (247 RCC WSIs and 1070 BRCA WSIs)
- TCGA datasets are separated into multiple groups of institutions based on tissue source sites

- Learning algorithms:

- Privacy-preserving federated learning using federated averaging + Gaussian mechanism with adjustable hyperparameter α
- Attention multiple instance learning based classification (cross-entropy loss) and survival prediction (negative log-likelihood loss for discrete survival model).
- Adam optimizer: 2e-4 lr, 1e-5 weight-decay

- Evaluation:

- 70/15/15 train, val, test partitions
- AUC, Error, bACC (balanced accuracy), F1, mAP, Cohen's *k*
- C-index, log-rank test

Discussion

- We generalize attention-based multiple instance learning to weakly-supervised federated learning for multi-institutional computational pathology on WSIs, requiring only slide-level/patient-level labels
- Our approach is privacy-preserving, interpretable, generally applicable to both classification and survival prediction and can easily be used on large WSI datasets

