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• Accurate, robust AI predictive models often require large 
amounts of  diverse, high-quality labeled data, which can 
be difficult or impossible to curate at a single institution.

• Federated learning allows machine learning models to be 
developed on multi-institutional data without requiring 
direct data sharing, alleviating the burden of  navigating 
around many challenges of  sharing sensitive patient data 
and large cohorts of  histopathology images at the tera- or 
peta-byte scale.

• There is a need for the development and validation of  
federated learning algorithms for a wide range of  
computational pathology tasks.

We present a federated learning framework for both weakly-
supervised classification and survival prediction on whole slide 
images and validate our approach on three different computational 
pathology tasks, using multi-institutional data from the TCGA and 
Brigham and Women’s Hospital. Our approach is privacy preserving, 
does not require manual annotations during training, is interpretable 
and can be applied at scale. 

• We generalize attention-based multiple 
instance learning to weakly-supervised  
federated learning for multi-institutional 
computational pathology on WSIs, 
requiring only slide-level/patient-level 
labels

• Our approach is privacy-preserving, 
interpretable, generally applicable to both 
classification and survival prediction and 
can easily be used on large WSI datasets

Federated Learning for Weakly-supervised Classification and Survival Prediction on Whole Slide Images
Experimental Setup
- Classification tasks:

- Renal cell carcinoma (RCC) histologic 
subtyping into clear cell (CCRCC), papillary 
(PRCC) and chromophobe (CHRCC) 

- Breast invasive carcinoma (BRCA) histologic 
subtyping into ductal (IDC) and lobular 
(ILC)

- Survival prediction:
- CCRCC survival prediction and risk-based 

patient stratification  

- Datasets:
- TCGA-KIRC (519 WSIs), TCGA-KIRP (297 

WSIs), TCGA-KICH (121 WSIs), TCGA-
BRCA (1056 WSIs), BWH In-house (247 RCC 
WSIs and 1070 BRCA WSIs)

- TCGA datasets are separated into multiple 
groups of  institutions based on tissue source 
sites

- Learning algorithms:
- Privacy-preserving federated learning using 

federated averaging + Gaussian mechanism 
with adjustable hyperparameter α

- Attention multiple instance learning based 
classification (cross-entropy loss) and survival 
prediction (negative log-likelihood loss for 
discrete survival model).

- Adam optimizer: 2e-4 lr, 1e-5 weight-decay 

- Evaluation:
- 70/15/15 train, val, test partitions
- AUC, Error, bACC (balanced accuracy), F1, 

mAP, Cohen’s 𝜿
- C-index, log-rank test 

BRCA Subtyping

RCC Subtyping Survival  Prediction

First, the tissue regions of  each WSI are segmented and divided 
into patches and encoded by a pretrained CNN into low-
dimensional embeddings {𝒛!}, 𝒛! ∈ ℝ"#$% . This results in each 
WSI being described by a matrix of  patch embeddings: 𝑯& ∈
ℝ'!×"#$%, where 𝑀& is the number of  patches in the 𝑗)* WSI.  After 
projecting {𝒛&,!} into {𝒉&,!}, 𝒉&,! ∈ ℝ,"$ , the contribution of  each 
patch 𝑎&,! is given by:

where 𝑾-, 𝑼- and 𝑽- are learnable network parameters. Using 
weighted average pooling,  the WSI is in turn described by 𝒉.-/! ∈
ℝ,"$:

Depending on the task, the last layer of  the network either predicts 
class-probability scores (classification) or models the hazard 
function (survival prediction):

For classification, the network is supervised via the cross-entropy 
loss, and for survival, we used the nll loss given below, where 𝑓0123
is the survival function, 𝑐& the censorship status and 𝑌& the ground 
truth discrete follow-up time:

Gaussian mechanism
𝒛4~𝑁 0, 𝛼$η4$ represents random noise generated 
from a Gaussian distribution with 0 mean and std 
proportional to η4 , the std of  the local network weights. 


