
Problem
A pathologist’s process of making a diagnosis is focused, 
holistic, and robust.

A pathologist fully inspects all slides, carefully attends to 
informative regions within the slides, jointly considers all 
informative regions as context, and integrates available 
complementary clinical information or modalities.

This process has been incredibly challenging to 
approximate with artificial intelligence [AI].
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Platform & data
From social media, we downloaded 19349 images from 8959 Twitter 
posts from 30 consenting pathologists in 13 countries in 4 continents.
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Pathology disease states

Herpes esophagitis(MPP) Collagenous colitis(KH)

Pulmonary hamartoma(AM)

Breast cancer(BDS)

Leiomyoma(RSS)
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Solution
Our proposed AI method attempts to model aspects of a 
pathologist’s diagnostic workflow:
1. the AI considers one or more photomicrographs to describe 
a case, 
2. attends to regions of interest within the 
photomicrograph(s),
3. jointly considers all regions of interest for an overall 
prediction, and
4. includes possibly-missing covariates such as tissue type.
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We present the first 
attention-guided AI for 
multimodal search of 
similar histopathology 
cases on social media.
  This attention learns to 
downweight background, 
pen, normal tissue, etc..
  Further optimization and 
modalities will be 
considered in the future.
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Features
Each image was
described by
a feature vector
of 2412
numbers.
These vectors 
are used for 
machine
learning,
prediction,
and search.
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AnalysesMethods
Covariates and N images are inputs to a deep neural 
network, which learns to attend to important images, 
to make an overall prediction for the case.
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