
Background

• Necrosis: A spectrum of morphological changes that follow cell death in
living tissue, largely resulting from the progressive degradative action of
enzymes on the lethally injured cell.

• Types of necrosis:

Results
• Loss functions: Binary cross-entropy, Dice similarity coefficient.
• Optimizers: Momentum, Adam.
• Data augmentation: Rotation, Translation, Zoom, Shear, Horizontal flip.
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Figure 1: Luminal and geographic necrosis examples in H&E and Fluorescent multiplex stained images.

Necrosis Identification and Challenges
• Excluding necrosis allows us to focus on

the Tumor Microenvironment (TME) and
get better insight into responses to
immunotherapy approaches.

• Manual identification and annotation is
the most common practice.

Challenges in manual detection:

• Variation with respect to size, shape,
number, region of occurrence.

• Time consuming.

• Reliance on H&E stained image.

Result of manual annotation:

• Expensive process.

• Annotations can vary across pathologists.

• Susceptible to errors and inaccuracies. Figure 2: Variation in necrotic regions (yellow) 
within TME (red).

Methods
Automated Workflow

Figure 3: Illustration of workflow for an automated framework.

Figure 4: Gamma correction with ɣ < 1.
Figure 5: Amplification of lower intensity pixels using 

gamma correction with ɣ = 0.5.
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Figure 6: U-Net architecture setup. U-Net is simple, fast to train, gives reasonable results with less 
amount of training data. U-Net and its variants have achieved state-of-the-art results for medical 

image segmentation.

Hyperparameters Dice Similarity
Loss: Binary cross-entropy, Optimizer: Momentum, Learning rate: 1e-3 0.82

Loss: Dice Similarity Coefficient, Optimizer: Adam, Learning rate: 1e-4 0.82
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Figure 7: Comparison of ground-truth and predicted masks for different FOVs.




