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1 - Background

The goal of digital pathology is analyzing whole slide images (WSI) to extract diagnostic and prognostic information.
* Machine learning models are used to detect objects or patterns in WSIs that are related to a specific biological process.

* Training the models requires a large set of manually labeled ground truth, which is tedious and time-consuming to collect.

Active learning is a special case of machine learning in which a learning algorithm is able to interactively query the user (or

some other information source) to obtain the desired outputs at new data points.
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Active learning approaches can:
* Dramatically reduce the time needed for complete and accurate labeling

* Increase the accuracy for difficult-to-classify instances Labeling Retrain classification rule

Two components of any Active Learning approach:
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Image from: https://histomicsml.readthedocs.io/en/latest/index.html

4 — Designed Active Learning System

The designed system can be employed by pathologists, or imaging scientists to collect the ground truth and train classifier
models in an iterative manner. Both conventional machine learning and deep learning models can be trained using this
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This framework is available within dPath, a Roche Tissue Diagnostics Computational Pathology Research Platform. A high

performance image server handles the requests for images from the front-end application. Using Roche’s High-Performance

Cluster, results from training and inferencing the model are generated and stored at scale in a database. APIs enable the
interaction between the machine learning engine and the database. The dPath platform integrates all of these components
and allows the user to train models within a web browser.

2 — Objective

Developing an active learning system that guides the user to focus their labeling effort on those examples that contribute

the most to the learning performance of the machine learning model.

By employing our active learning system:
* Machine learning models can be trained using far less labeled data

e Users can train or optimize classifier models while iteratively collecting the ground truth.
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Any user, from pathologists to imaging scientists, can use our system to collect ground truth (annotate objects or regions of
interest on WSIs) and train a classifier. The designed system has a great impact on DP applications as it:

* Provides a wise ground truth collection approach, which is fast and less expensive
Enables fine tuning of pre-trained machine/deep learning models on new datasets
Aggregates ground truth annotated on different cohorts or projects in one place

Saves all the ground truth ever collected, into database for future use by all the users.
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(Top)The user starts with labeling cells or regions of the tissue in the images. The labeled examples are used to train a model
or optimize a pre-trained model. (Bottom) The classification results and corresponding certainty heatmap are visualized. The
user then labels more training samples from the most uncertain regions and retrains the classifier. This iteration continues
until the model reaches the desired performance and can be deployed (cross: high certainty, circle: low certainty instances).
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3 — Feasibility Study

Detection of macrophages in multiplex immunofluorescence (IF) stained tissue images

Data: Development dataset: 103 Field of Views (FOV) selected from WSlIs (2880 labeled instances: 1492 pos., 1388 neg.)
QC dataset: 30 FOVs (16013 labeled instances: 1324 pos., 14689 neg.)
Ground Truth (GT): Instances that are labeled by the user during active learning process (14 instances from each FOV)

Results:
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Observations:
* Enabled wiser ground truth generating (active learning approach vs random sample selection)
* Trained the classifier with half the size of the labeled data needed in random sample selection approach

5 — Active Deep Learning

A framework for training or fine tuning Deep Learning (DL) models

Feasibility Study:

Automated identification of necrotic regions in
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6 — Conclusion

The digital pathology active learning system enables the end user to create and optimize a classifier in an efficient and
interactive manner. The user can train and optimize both conventional machine learning and deep learning models using
this system.
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